
Learning to Extract Information for the Semantic Web

Christian Siefkes
�

Berlin-Brandenburg Graduate School in Distributed Information Systems
�

Database and Information Systems Group, Freie Universität Berlin
Takustr. 9, 14195 Berlin, Germany

christian@siefkes.net

Abstract: The goal of information extraction (IE) is to find desired pieces of informa-
tion in natural language texts and store them in a form that is suitable for automatic
querying and processing; the Semantic Web provides formats and standards for storing
and processing such data. Hence IE-based automatic or semi-automatic approaches
are a promising approach for building the Semantic Web. My Ph.D. thesis focuses on
developing and refining trainable algorithms for this purpose.

1 Introduction

1.1 Information Extraction

Most of the information stored in digital form is hidden in natural language (NL) texts.
While information retrieval (IR) helps to locate documents which might contain the facts
needed, there is no way to answer queries. The goal of information extraction (IE) is to
find desired pieces of information (slot fillers and templates) in NL texts and store them in
a form that is suitable for automatic querying and processing. Slot fillers contain a single
piece of data (e.g., a name or a date); templates contain a list or tuple of slot fillers and/or
other templates (e.g., an address list contains a list of address templates, a person/job
title/company relationship contains a tuple of three slot fillers). Thus templates can be
arranged in a hierarchical structure.

The precursor of information extraction, text understanding, tried to create a complete for-
mal representation of the contents of a text, but this aim has been found over-ambitious
and impossible to realize. To avoid this trap, IE requires a predefined output representa-
tion (template structure) and only searches for facts that fit this representation. All other
information contained in the input text is simply ignored, as are aspects of language that
resist formalization, e.g., the intentions and moods of the authors.

�
Supervisor: Prof. Dr. Heinz F. Schweppe, Database and Information Systems Group, FU Berlin.�
This research is supported by the German Research Society (DFG grant no. GRK 316).

mailto:christian@siefkes.net


1.2 The Semantic Web

There is another approach to providing text-related data in a form suitable for automatic
querying and processing: the Semantic Web1. While IE aims to extract relevant informa-
tion from NL texts, the Semantic Web encodes data related to a text (or any URI) in an
explicit form, typically in RDF2 format. The explicitly provided data allows more refined
IR and automatic querying through ontology languages such as OWL3.

The term metadata is sometimes used in a wide sense to refer to any information expressed
in RDF or similar formats; in a strict sense it refers to data about documents (e.g., title,
author, language of a text). I will use the term semantic annotations for the wide sense,
reserving my use of metadata to the strict sense.

The Semantic Web does not determine how semantic annotations are produced. The most
typical approach is to write them manually. While this leads to high-quality results if done
well, it is a slow and tedious process. Annotations built this way will always be limited
to a small part of the World Wide Web because many authors will not take the additional
effort to provide them; they will often be out-of-date because an author forgets to update
them when changing a document.

Hence automatic or semi-automatic approaches are an attractive alternative for building
the Semantic Web. Such approaches utilize IE techniques to generate machine-readable
semantic annotations from NL texts. The resulting data cannot be expected to reach the
quality of manually written data; it is certain to contain errors and gaps that can be detected
by human judgment only. It is still useful to propose an initial set of semantic annotations
as input for a human annotator, thus alleviating the laborious task of writing them manu-
ally; and to cover areas not (yet) treated by humans, since imperfect data is (in many cases)
better than none. When trainable methods are used to produce the semantic annotations,
they can learn from feedback provided by human correctors, thus avoiding to make the
same mistakes over and over.

My Ph.D. thesis focuses on developing and refining such trainable algorithms that employ
IE techniques for helping to build the Semantic Web.

2 What to Extract: Target Structure and Output Format

The main task of IE consists in filling predefined templates with facts extracted from texts.
Typically this is done in two steps: element filling to find suitable slot fillers and if neces-
sary normalize them (conversion to the required target datatype); and template unification
to resolve coreferences and assemble the slot fillers into templates.

In IE, there are no standard formats for specifying target structures and for storing ex-
tracted templates. In the Semantic Web context, an obvious choice is to use RDF for

1http://www.w3.org/2001/sw/
2http://www.w3.org/RDF/
3http://www.w3.org/TR/owl-guide/

http://www.w3.org/2001/sw/
http://www.w3.org/RDF/
http://www.w3.org/TR/owl-guide/


storing the extracted facts and consequently RDF Schema4 for specifying the target struc-
ture.

RDF is built on the concepts of resources and properties. Everything described by RDF is
an rdfs:Resource, identified by an URI or by a literal. RDF resources are typed. Ex-
cept for the container (rdfs:Container) and collection (rdf:List) classes that allow
to group resources, there is no need for build-in types in RDF, since the XML Schema
datatypes5 or any compatible typing schema can be used. The type (class) hierarchy can
be extended through the rdfs:subClassOf property.

An rdf:Property (also called predicate) is a relationship between two kinds of resources
(subject and object of the property)—the combination of subject, predicate, and object is
called a triple. Property relationships are typed: the required type of the object is called the
rdfs:range of a property; its rdfs:domain specifies the type of the subject. Properties
themselves are arranged in a type hierarchy: a property P1 is a rdfs:subPropertyOf

of a property P0 if all resources related by P1 are also related by P0.

In addition to the inheritance hierarchy (superclass/subclass), there is another kind of hier-
archy that is important for entity recognition: the aggregation hierarchy, i.e., has-part/is-
part-of relations. Aggregation relates a record with its members, e.g., address contains
street, city, ZIP code. It can also relate a list with its elements, e.g., address is part of
address list. The Dublin Core Metadata Initiative6 recommends isPartOf and hasPart

properties that could be used to express aggregation.

For IE, resources can be considered candidates for slot fillers; while properties can express
very simple templates (expressing a relationship between two slot fillers). More complex
templates can be expressed through aggregation or through a conjunction of properties.
E.g., the previously mentioned person/job title/company relationship is expressed when
the object of a jobTitleOf property and the subject of a worksFor property refer to the same
person entity.

3 How to Extract: Learning Algorithm and Context Representation

3.1 Linguistic Preprocessing: Making the Text Structure Visible

RDF resources and properties are thus arranged in a class hierarchy. On the other hand, the
input text originally might appear to be flat data without visible structure; just a sequence
of characters. Yet this is a wrong impression—there is structure in any text. At a low level,
text can be considered as a sequence of tokens (words, numbers, punctuation). In natural
language texts, tokens are arranged in sentences. Several sentences are grouped in para-
graphs, which are grouped in sections (which in turn might be grouped in higher-order
sections). By interpreting this structure, a text can be converted to a tree representation.
In structured text formats (e.g., HTML, DocBook or other XML/SGML-based formats)

4http://www.w3.org/TR/rdf-schema/
5http://www.w3.org/TR/xmlschema-2/
6http://www.dublincore.org/documents/dcmi-terms/

http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/xmlschema-2/
http://www.dublincore.org/documents/dcmi-terms/


the higher-level structure (usually down to the paragraph level) is explicitly coded, but the
lower-level structure (sentences; sentence elements like verb groups or noun phrases; to-
kens) must usually be induced. Existing software components can be used or adapted for
this purpose.

A tokenizer is used to split the text into tokens. Tokens are the lowest-level leafs in the tree
(above the character level). To provide additional context information, tokens are typically
tagged, both syntactically (part of speech tagging, morphologic analysis) and semantically
(synonym sets and hypernym/hyponym relations provided by a thesaurus). A sentence
splitter divides the text into sentences. A parser builds a (more or less complete) linguistic
representation of each sentence. Most parsers split a sentence into “chunks” like verb
groups, noun phrases and prepositional phrases.

3.2 The Main Tasks: Hierarchical Entity and Relationship Recognition

When an RDF Schema defines the target structure, the main task of IE is to extract suitable
RDF triples and store them in an RDF document that conforms to the predefined Schema.
A triple is a relationship between two typed entities (resources), so a preparatory step is to
find all entities in a document and identify their types.

3.2.1 Entity Recognition and Normalization

Entity recognition can be handled as a classification task, where each token (typically a
word) in a text is classified as the begin of an entity of a certain type, as a continuation of
the previously started entity (if any), or as not belonging to any entity. The type hierarchy
of RDF Schema (expressed by the subClassOf property) is relevant for entity recogni-
tion: in an initial step, only the top-most types (those without a subClassOf property)
of entities must be determined. The classification of entities is refined in further steps,
determining for each found entity whether it belongs to one of the direct subclasses of the
original type. This process iterates until the type hierarchy is exhausted.

The entity recognizer can utilize the aggregation hierarchy in the same way it uses the
type hierarchy, first locating entities whose type is not part of any other type and then
iteratively locating the parts of the containing entity. In a first step, a large address list
might be identified in the text. The list is split in a number of addresses in the second step.
Finally, street, city, ZIP code and other parts of each address are determined.

The raw form that is used to express an entity in the text will often differ from the ideal
format that should be used for entities of this type. E.g., a date referred to in a text as
October 15th, 2003 should be stored as 2003-10-15 according to ISO 8601. Aggregation
can be very useful for such normalizations: It would require complex rules to convert a
whole date from any of the forms used in texts to a standard form, but when its three
parts (year=2003; month=October; day=15th) have also been tagged, the task becomes
considerably easier. For entity types that are limited to a finite number of known instances
(the 12 months of a year, the up to 31 days of a month), classification can handle the rest.



3.2.2 Coreference Resolution and Relationship Recognition

The goal of coreference resolution is to decide whether two entity references of the same
type denote the same individual. Coreference resolution can be treated as a binary classifi-
cation of whether or not two entities are likely to corefer, based on their contents (contained
tokens and aggregated entities), respective positions (distance from each other, location
within the containing element etc.), and contexts. Coreference can be considered a special
kind of relationship: the owl:sameIndividualAs relationship defined by OWL.

The existence of other relationships (RDF properties) can be determined in a similar way,
by classifying whether a relationship exists between an entity of the domain type and an
entity of the range type required by this property.7 After coreferences have been resolved,
it should be sufficient to restrain the search space to entities mentioned near to each other
in the text.

RDF properties are arranged in a type hierarchy just as other RDF resources, allowing
an iterative refinement of the recognized relationships. So after finding an isRelativeOf
property between two entities, in the next step the algorithm can decide whether to refine
this to a subproperty such as isSisterOf.

Some relationships are exclusive, while others allow an entity to take the domain resp.
range role of several such relationship. So somebody can be the object (range) of several
isSisterOf properties, but only of one isMotherOf property. In the first case, the classifier
can accept several “competing” relationships, while in the second case it should only keep
the most likely one. Such cardinality constraints cannot be expressed in RDF Schema,
but require a more powerful language such as OWL which allows owl:cardinality,
owl:minCardinality, and owl:maxCardinality restrictions on properties.8

3.3 The Learning Algorithm

The learning algorithm should fulfill several functional requirements:

1. It should be trainable on a wide range of input texts and linguistic preprocessing
components.

2. It should provide a measure of confidence in its results.
3. It should degrade gracefully, delivering as much results as possible when a complete

analysis fails.
4. The algorithm should be able to update the extraction model without starting from

scratch, thus allowing incremental training.
5. It should respond in a reasonable time—efficiency is not a top priority, but it should

not be neglected.

Approaches to information extraction can be classified into three categories: hand-written
rule-based algorithms (e.g., GATE/Annie [CHGW97]); rule-based machine learning (ML)

7A similar approach to relationship recognition is used by [MCF � 98].
8OWL Lite only allows cardinality values of 0 or 1 (or unlimited) which should be enough for most purposes.



algorithms (e.g., WHISK [Sod99]); and statistical methods (e.g., maximum entropy mod-
eling [Rat98]).

Hand-written rules are obviously not trainable and thus fail the first requirement. Machine-
learned rules usually work in a purely binary “all or nothing” fashion, while statistical
approaches attach a probability or weight to their decisions, as postulated by the second
and third requirement.

Many statistical algorithms are unsuited for incremental training. Among those that remain
are the “sparse binary polynomial hashing” of the CRM1149 text classifier [Yer03] and
the context modeling technique used by PPM (Prediction by Partial Match) [WBMT99]
(which is also adaptable to hierarchical contexts [Che01]). I will adapt and extend these
or other suited incrementally trainable statistical algorithms for the purposes of my work.

3.4 Hierarchical Context Representation

Training requires an anchoring of extracted entities and relationships with their original
representation in the input text (augmented text). Then a trainable algorithm can learn to
classify them based on their textual contents and contexts.

Typically, the context window considered by IE algorithms comprises either the nearest
tokens/words (e.g., [Cir01]) or some predefined syntactic elements of the current sentence
(e.g., [SFAL95]). Regarding the input text as a hierarchical tree structure results in a
more flexible context model: the context of a node contains the nearest nodes around it—
its parents, children and (near) siblings. Thus the context window can include non-local
information, e.g., a section heading or the head and stub cells of a table.

For this purpose, dependency trees (where content can also be attached to internal nodes)
are more suited than simple trees (where all content is represented in the leafs). In a de-
pendency tree, a section element has the section title as content and other elements like
subsections and paragraphs as child nodes. In XML, dependency trees can be simulated
through a cross-referencing mechanism (a node can have a “head-child” attribute that ref-
erences one of its direct child nodes).

The actual content representation will depend on the used input formats and preprocessing
components, as there is no single canonical way of embedding a text in a tree structure.
This is no serious hindrance, as the learning algorithm does not postulate any particular
representation, but will adjust to the given features. The same context representation must
be used for training and evaluation/application, thus a change in preprocessing components
will require a full retraining.

9http://crm114.sourceforge.net/

http://crm114.sourceforge.net/


4 What to Do: Application Scenarios

For evaluation and demonstration purposes, the chosen algorithms and context representa-
tions should be tested and utilized in several related application scenarios:

Metadata Extraction: The goal of this task is to extract metadata in the strict sense, i.e.,
data about text, based on the Dublin Core standard. Extracting metadata from a text
requires mainly entity recognition, as the object of the relationship is already known
(the text itself).

Filtered Information Retrieval allows to constrain terms in IR queries to selected entity
types (e.g., documents in which Ford refers to a person, not a company).

Entity Referencing augments web pages with cross-references from contained entities to
external background information, e.g., to CiteSeer10 for bibliographic entries, to a
map for locations, or to an encyclopedia entry.

Semantic Highlighting and Indexing: Semantic highlighting marks all entities of a cer-
tain type in a text or all coreferences to a chosen entity (maybe on mouse-over via
Dynamic HTML). Semantic Indexing shows a hyperlinked index of the names of
all persons (or any other entity type) mentioned in a document. An index can also
list the subjects or objects of a chosen relationship, e.g., all persons working for
company X.

Making such demo applications publicly available is not only useful as a showcase, but
especially for capturing user feedback that can be employed for further training or for
evaluation.

5 Related Work

Approaches that employ similar methods have been referenced throughout the text. Ap-
proaches that have related goals comprise the ML-generated CiteSeer citation index
[LGB99], the Web � KB11 project (where rules are learned to extract predefined entities and
relations from Web pages [CDF

�
00]), and the CORPORUMOntoExtract system [EBJ01]

(that uses grammar-based methods to extract Dublin Core metadata and “light-weight on-
tologies” from NL texts). [KSS01] use the classification and annotation data provided
by Web directories such as Open Directory for learning indicator phrases for extracting
metadata from texts. All of these approaches utilize rule learning.

I am not aware of any other projects using incrementally trainable statistical methods for
Semantic Web–related information extraction. The employment of general hierarchical
models for both input and output representation is another novel trait of my approach.

10http://citeseer.nj.nec.com/
11http://www-2.cs.cmu.edu/˜webkb/

http://citeseer.nj.nec.com/
http://www-2.cs.cmu.edu/~webkb/


References

[CDF � 00] Mark Craven, Dan DiPasquo, Dayne Freitag, Andrew K. McCallum, Tom M. Mitchell,
Kamal Nigam, and Seán Slattery. Learning to Construct Knowledge Bases from the
World Wide Web. Artificial Intelligence, 118(1/2):69–113, 2000.

[Che01] James Cheney. Compressing XML with Multiplexed Hierarchical PPM Models. In
Proceedings of IEEE Data Compression Conference, pages 163–172, 2001.

[CHGW97] Hamish Cunningham, Kevin Humphreys, Robert Gaizauskas, and Yorick Wilks. Soft-
ware Infrastructure for Natural Language Processing. In 5th Conference on Applied
Natural Language Processing, Washington, 1997.

[Cir01] Fabio Ciravegna. (LP)
�

, an Adaptive Algorithm for Information Extraction from Web-
related Texts. In Proceedings of the IJCAI-2001 Workshop on Adaptive Text Extraction
and Mining, Seattle, USA, 2001.

[EBJ01] R. H. P. Engels, B. A. Bremdal, and R. Jones. CORPORUM: A Workbench for the Se-
mantic Web. In Proceedings of the Semantic Web Mining Workshop at ECML/PKDD-
2001, 2001.

[KSS01] Martin Kavalec, Vojtech Svátek, and Petr Strossa. Web Directories as Training Data
for Automated Metadata Extraction. In Proceedings of the Semantic Web Mining Work-
shop at ECML/PKDD-2001, 2001.

[LGB99] Steve Lawrence, C. Lee Giles, and Kurt Bollacker. Digital Libraries and Autonomous
Citation Indexing. IEEE Computer, 32(6):67–71, 1999.

[MCF � 98] Scott Miller, Michael Crystal, Heidi Fox, Lance Ramshaw, Richard Schwartz, Rebecca
Stone, Ralph Weischedel, and the Annotation Group. Algorithms That Learn to Extract
Information—BBN: Description of the SIFT System as Used for MUC. In Proceedings
of the Seventh Message Understanding Conference (MUC-7), 1998.

[Rat98] Adwait Ratnaparkhi. Maximum Entropy Models for Natural Language Ambiguity Res-
olution. PhD thesis, University of Pennsylvania, 1998.

[SFAL95] Stephen Soderland, David Fisher, Jonathan Aseltine, and Wendy Lehnert. CRYSTAL:
Inducing a Conceptual Dictionary. In Chris Mellish, editor, Proceedings of the Four-
teenth International Joint Conference on Artificial Intelligence, pages 1314–1319, San
Francisco, 1995. Morgan Kaufmann.

[Sod99] Stephen Soderland. Learning Information Extraction Rules for Semi-Structured and
Free Text. Machine Learning, 34(1–3):233–272, 1999.

[WBMT99] Ian H. Witten, Zane Bray, Malika Mahoui, and W. J. Teahan. Text Mining: A New
Frontier for Lossless Compression. In James A. Storer and Martin Cohn, editors, Pro-
ceedings Data Compression Conference, pages 198–207, Los Alamitos, CA, 1999.
IEEE Press.

[Yer03] William S. Yerazunis. Sparse Binary Polynomial Hashing and the CRM114 Discrimi-
nator. In Proceedings of the 2003 Spam Conference, Cambridge, MA, 2003. MIT.


	Introduction
	Information Extraction
	The Semantic Web

	What to Extract: Target Structure and Output Format
	How to Extract: Learning Algorithm and Context Representation
	Linguistic Preprocessing: Making the Text Structure Visible
	The Main Tasks: Hierarchical Entity and Relationship Recognition
	Entity Recognition and Normalization
	Coreference Resolution and Relationship Recognition

	The Learning Algorithm
	Hierarchical Context Representation

	What to Do: Application Scenarios
	Related Work

